Exam: Class Test

Physics

Max.Marks:35

Solid, Fluid \& Thermal

1. Why are bridges declared unsafe after a long use?
2. Consider a barometer tube filled with mercury as shown in the adjoining figure. If a hole is made at a point Q as shown in the figure, will mercury come out from this hole? Give reasons in support of your answer.

3. Steam at $100^{\circ} \mathrm{C}$ is passed into 20 g of water at $10^{\circ} \mathrm{C}$. When water acquires a temperature of $80^{\circ} \mathrm{C}$, the mass of water present will be what.
[Take specific heat of water $=1 \mathrm{cal} \mathrm{g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$ and latent heat of steam $=540 \mathrm{cal} \mathrm{g}^{-1}$]
4. Three identical rods A, B and C of same length are joined as shown in the figure. The left and right ends are at temperatures $60^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$, respectively. Calculate the temperature of junction point O .

5. Figures (a) and (b) refer to the steady flow of a (non-viscous) liquid, which of the two figures is incorrect? Why?

6. The temperature of a rod is increased by ΔT and as a result, temperature and moment of inertia of the rod are T and I, respectively and coefficient of linear expansion of the rod is α, then $\frac{\Delta I}{I}$ will be.?
7. The pressure of a medium is changed from 1.01×10^{5} pa to 1.165×10^{5} pa and changed in volume is 10% keeping temperature constant. Find the bulk modulus of the medium.
8. The breaking stress for a metal of density $8 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ is $8 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$. What maximum length of a wire made of this metal can be suspended without breaking? Take $\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$
9. What pressure is required to stop the increase in volume of steel block when it is heated from $30^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$. Coefficient of linear expansion of steel is $1.1 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$ and bulk modulus of elasticity is $1.6 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$.
10. Two wires of diameter 0.25 cm , one made of steel and the other made of brass, are loaded as shown in the figure. The unloaded length of steel wire is 1.5 m and that of brass wire is 1.0 m . Compute the elongations of the steel and the brass wires. (Given $Y_{\text {steel }}=2 \times 10^{11} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}, Y_{\text {Brass }}=0.9 \times 10^{11} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$.)

11. A capillary tube of length 25 cm and diameter 0.1 cm is fitted horizontally to a vessel full of a liquid of coefficient of viscosity 0.012 cgs unit. The depth of the capillary tube below the surface of liquid is 15 cm . If the density of liquid is $0.8 \mathrm{~g} / \mathrm{cm}^{3}$, calculate the amount of the liquid that will flow out in 7 minutes. Take $\mathrm{g}=980 \mathrm{~cm} / \mathrm{s}^{2}$.
12. A tank contains iodine and water as shown in the adjoining figure. An Aluminum cube of side 5 cm is in equilibrium as shown. Calculate the fraction of volume of cube inside the iodine? Take. Relative density of iodine $=4.927$ Relative density of Aluminum $=2.7$
13. Calculate the elastic potential energy stored in a steel wire when it is stretched through 3 mm . The length of wire is 3 m and cross-sectional area is $5 \mathrm{~mm}^{2}$ and Young's modulus for steel is $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$.
14. Derive the expression for Adiabatic process.

A balloon pumped to a pressure of 2.275 atmosphere and at $25{ }^{\circ} \mathrm{C}$ suddenly bursts. What will be the temperature of escaping air? Given, $\gamma=1.5$
15. At a depth of 1000 m in an ocean (a) What is the absolute pressure? (b) What is the gauge pressure? (c) Find the force acting on the window of area $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ of a submarine at this depth, the interior of which is maintained at sea-level atmospheric pressure.
(The density of sea water is $1.03 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

